Construct Networks of Different Tags
simplified_network.RdConstruct Networks of Different Tags
Usage
simplified_network(
  M,
  from = NULL,
  to = NULL,
  nNode = 30,
  remove_keyword = NULL,
  edge_weight_cutoff = 1,
  analysis,
  network,
  field,
  delete_isolate = TRUE,
  graph = FALSE,
  ...
)
country_network(
  M,
  analysis = "collaboration",
  network = "countries",
  field = "AU_CO_NR",
  edge_weight_cutoff = 5,
  nNode = 20,
  graph = FALSE,
  ...
)
author_network(
  M,
  analysis = "collaboration",
  network = "authors",
  field = "AU",
  edge_weight_cutoff = 5,
  nNode = 200,
  graph = FALSE,
  ...
)
university_network(
  M,
  analysis = "collaboration",
  network = "universities",
  field = "AU_UN_NR",
  edge_weight_cutoff = 10,
  nNode = 30,
  graph = FALSE,
  ...
)
keyword_network(
  M,
  nNode = 100,
  edge_weight_cutoff = 3,
  field = "ID",
  analysis = "co-occurrences",
  network = "keywords",
  graph = FALSE,
  ...
)Arguments
- M
 bibliometrix data frame
- from
 start of PY
- to
 end of PY
- nNode
 Maximum number of nodes presented in the network
- remove_keyword
 regex used to filter data
- edge_weight_cutoff
 edge weight cutoff
- analysis
 type of analysis
- network
 type of network
- field
 data column for network construction
- delete_isolate
 TRUE
- graph
 whether return graph
- ...
 pass to
biblio_network()